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ABSTRACT

A new statistical approach for construction of the genetic linkage map and estimation of the parental
linkage phase based on allele frequency data from pooled gametic (sperm or egg) samples is introduced.
This method can be applied for estimation of recombination fractions (over distances <1 cM) and ordering
of large numbers (even hundreds) of closely linked markers. This method should be extremely useful in
species with a long generation interval and a large genome size such as in dairy cattle or in forest trees; the
conifer species have haploid tissues available in megagametophytes. According to Mendelian expectation,
two parental alleles should occur in gametes in 1:1 proportions, if segregation distortion does not occur.
However, due to mere sampling variation, the observed proportions may deviate from their expected value
in practice. These deviations and their dependence along the chromosome can provide information on the
parental linkage phase and on the genetic linkage map. Usefulness of the method is illustrated with
simulations. The role of segregation distortion as a source of these deviations is also discussed. The software
implementing this method is freely available for research purposes from the authors.

STIMATION of recombination fraction over dis-
tances <1 cM is important because current ge-
netic maps are very inaccurate in such distances (KONG
et al. 2002; WEBER 2002; ARNHEIM et al. 2003) and be-
cause of current interest toward characterization and
utilization of haplotype-block structure of the human
genome (ARNHEIM et al. 2003; INTERNATIONAL Hap-
Map ConsorTIUM 2003). For an excellent general re-
view of characterization of recombination in small
distances, see ARNHEIM e¢f al. (2003).

To estimate parental linkage phase and short map dis-
tances in a range <1 cM one would ideally require data
from several gametes (haploid tissues). In species with
a short generation cycle it may be possible to produce
“map expansion” (an excess of recombinants) by ap-
plying a number of consecutive intercrosses (DARVASI
1998). Several haplotyping methods for pedigree data
(WiysMaN 1987; KRUGLYAK et al. 1995,1996; SOBEL and
LANGE 1996; SOBEL ef al. 1996; LiN and SPEED 1997,
TAPADAR ef al. 2000; QiaN and BEckMANN 2002; Gao
et al. 2004) and for general population samples (CLARK
1990; ExcorrIER and SLATKIN 1995; HAWLEY and KipD
1995; LONG et al. 1995; STEPHENS et al. 2001; KITAMURA
et al. 2002; STEPHENS and ScHEET 2005) have been in-
troduced during the last two decades. Similarly, there
is a rich literature of methods for construction of
the genetic linkage map (LANDER and GREEN 1987;
STEPHENS and SMITH 1993; GEORGE ¢t al. 1999; JANSEN
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etal. 2001; BUTCHER et al. 2002; RosA et al. 2002; WU et al.
2002; Lu et al. 2004; GEORGE 2005). In species such as
forest trees or dairy cattle, where the generation cycle is
long and the genome size is large, all map distances and
ordering of markers are generally difficult to estimate.
However, certain types of haploid tissues such as sperm,
eggs, or megagametophytes may be easily available in such
species. Use of individual sperm typing (LAZZERONTI et al.
1994; Naviplr and ARNHEIM 1994, 1999; CULLEN et al.
2002; ARNHEIM et al. 2003) and utilization of DNA in
megagametophytes (TULSIERAM et al. 1992; YAZDANI
et al. 1995) for the estimation of the genetic map (order
and distances) have been proposed in the literature
earlier. However, extensive individual typing of haploid
tissues is not cost effective. Note that application of
radiation-hybrid mapping has also been proposed for
a similar purpose (BOEHNKE ef al. 1991; SLONIM et al.
1997).

Use of the pooled DNA data reduces the cost and time
spent on typing by allowing for direct determination
of allele frequencies at each locus (SHAw et al. 1998;
CoLLINS et al. 2000; RitLaAND 2002; SHAM et al. 2002;
BuTcHER et al. 2004; NORTON et al. 2004). Pooled DNA
data on diploid tissues can also be used to estimate
haplotype frequencies (ITo et al. 2003; YANG et al. 2003).
We assume here that allele frequency measurements
from pooled DNA can be obtained with a high accuracy
in the lab (NORTON ef al. 2002; SHAM et al. 2002;
BUTCHER et al. 2004; YANG et al. 2005). If haploid tissues
from a single parent are used in the pool and the
possibility of segregation distortion is excluded, the av-
erage proportions of the two parental alleles are even
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at each locus. However, the observed proportions often
deviate from expected proportions and are correlated
between the loci (due to close linkage of the loci), which
can provide information of the linkage phase (haplo-
types) of the parent. The information in these fluctua-
tions is stochastic in nature and can vary somewhat from
sample to sample. Note that these fluctuations, when
measured from large samples, can be used to detect seg-
regation distortion (McPEEK 1999; and see DISCUSSION).
When there is no significant evidence of segregation
distortion, the asymptotic properties of these fluctua-
tions (and their dependence) as a source of information
in estimating linkage phase of the parent at short map
distances are described in this article.

Hidden Markov models (HMMs) provide a flexible
modeling framework for several types of problems
(RABINER 1989), including the construction of the link-
age map (LANDER and GREEN 1987). The Viterbi algo-
rithm is a maximization algorithm that can be used in
HMMs to determine the optimal path (having the
highestlikelihood value) through the hidden state struc-
ture. The same algorithm can also be used to sample
directly from the posterior distribution. In the follow-
ing, we present our haplotyping method thatis based on
the Viterbi algorithm. Note that also the well-known
Genehunter program uses the Viterbi algorithm for
haplotyping (KRUGLYAK et al. 1995, 1996).

MODEL

We first describe the model for individual gametic
observations and then introduce the required modifi-
cations for that under pooled gametic observations.

Individual gametic observations: Assume that the
sample consists of n gametes A',..., k", which have
been collected from a diploid individual (the parent).
The parent is assumed to be a full heterozygote in a
given set of L polymorphic marker loci so that at each
locus there are two segregating alleles (denoted as 0 and
1) that can be distinguished in the sample. In practice,
we omit the loci in our sample, where only a single allele
can be identified (i.e., the parentis a homozygote). Each
gamete ¢ can then be represented as a vector h' =
(Bi,..., hi)€{0,1}".

Denote by X, the grandparental origin of the 0O-allele
at locus /, with the convention that when X;=0 (X;=1)
the origin of the 0-allele is grandpaternal (grandma-
ternal), respectively. Note that the assignment of the
vector X = (Xi,..., X;) € {0, 1}" uniquely determines
the parental linkage phase. A priori, (X;:1=1,..., L)
are independent random variables, p(X) = [, p(X.),
with respective Bernoulli(;) distributions. We assume
that both grandparental origins are a priori equally likely
at each locus; ie, m = % corresponding to linkage
equilibrium assumption for each locus [ (for potential
problems, see SCHAID et al. 2002; HUANG et al. 2004.)

However, in the case that we have some prior informa-
tion about parental linkage phase, e.g., genotype in-
formation from the grandparents, or knowledge about
linkage disequilibrium among the loci, we could set
T, 7&% or, in the latter case, assume a priori a Markov
model for (X;: I=1,..., L) (see McPEEK and STRAHS
1999).

Denote the vector of recombination fractions by
0=(0,:1=2,..., L),where an element 6,is the recom-
bination fraction between two consecutive loci (I — 1)
and /. The likelihood function is the following:

n L

p(rts o wX,0) =TT |p(h) TT p(hilhiys X, X0, 00) |-
i=1 =2

At the first locus above, gametes hi, i=1,..., n are

independent Bernoulli(1/2) variables. Then, given
X1, X, and (b ,:i=1,..., n), gametes (h):i=
1,..., n) are conditionally independent with the fol-
lowing distribution: If X; = X; ; (i.e., the grandparental
origin of the 0O-allele remains the same) then

plhy = hj_y|hi_y, Xiz1, X0, 80) = (1 - 6))
=1—p(hj=1—=hi_\|h_y, Xi1, Xi, 0))

and if X; # X, (i.e., the grandparental origins of the
O-allele differ) then

p(hy = h ||k 1, X1, X, 0,) =0,
=1—p(hy=1—=hj_i|hi_y, X1, Xi, 6,).

This formulation corresponds to the standard trans-
mission model (e.g,, SILLANPAA and Arjas 1999; see
their Equations 4 and 5). Here, although the phases
(X)) are a priori independent, the vectors (X, A}), | =
1,..., L, form a Markov process, which gives a HMM
with hidden layer (X;). Although the parameterization is
different, this is the same model assumed in LANDER
and GREEN (1987) and in KRUGLYAK ¢f al. (1995, 1996),
where a bit in their inheritance vector includes informa-
tion from both the grandparental origin (X)) and the
allele in the gamete (%j). Given the individual gametic
observations and the recombination fractions between
the loci, it is possible to apply a variant of the Viterbi
algorithm to compute the posterior distribution of the
parental linkage phase p(X|A', ..., ", 8), which is pro-
portional to p(', ..., h'|X, 8) X p(X). Itis also possible
to implement the EM algorithm (DEMPSTER et al. 1977)
to compute the maximum-likelihood estimator of the
recombination fractions (6).

Pooled gametic observations: Next we consider the
case, where instead of observing the individual gametes
(hi) we observe their (allele) frequencies from a gametic
pool or equivalently N; = Y| &, the number of copies
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X3

of the l-allele at locus /. The likelihood function for
pooled observations is the following:

L

Hl? (Ni|Ni-1, Xie1, Xi, 00) |-

H(N|X, 0) [
=2

At the firstlocus above, the frequency N, is independent
from phase vector X and it has the Binomial(n, %)
distribution. For loci { > 1, given the phase information
X1, X;, and the frequency N, at the previous locus, N,
has the following conditional distribution (given by
convolution of two binomials): If X; = X; ; (i.e., the
grandparental origin of the 0-allele remains the same)
then

Pp(Ni = s|Ni—1, Xi-1, X3, 0))

N, - N Y A
_Z( - 1)( - 1)65‘“** 2>(1 _el)(’rl*z\/,]*‘ﬁ’gl)

s—1

and if X; # X, (i.e, the grandparental origins of the
O-allele differ) then

p(N; = S\Nl 1, Xi-1, X1, 0))

Alternatively we can use the following notation:

Binomial(N,_1, 1 — 6;)*Binomial(n — N;_1, 6;)
if X, = X4
Nj ~
Binomial(N,_;, 6;)*Binomial(n — Nj_1, 1 — 6;)
it X; # Xi 1,

where * denotes convolution. These convolution dis-
tributions can be computed efficiently, using discrete
Fourier transform (see, e.g., BREMAUD 2002).

Multiple pools: We can also consider the case where
we observe different frequencies from 7p4015 distinct
pools, each containing »® gametes, k=1,..., npools.
Accordlngly, the pool-specific frequency vectors NW =
(NP NPYE[0,1, . a0 k=1, <y Mpools, Are
condmonally 1ndependent given the phase vector X,
starting with initial distribution N{¥ ~ Binomial (n®, %)
and then following independently the Markovian dy-
namics described above. To maintain simplicity of the
notation in the rest of this article, the theory is pre-

X (L-1) XL F1GURE 1.—Graphical rep-
resentation of the hidden
state structure. At locus L,
hidden parental linkage
phase is indicated as X
and the number of offspring
N(L-1) NL

having the l-allele as Nj.

sented mainly for a single pool but it generalizes to
multiple pools analogously.

Estimation of linkage phase: It may be somewhat
surprising, but becomes clear from the formula above,
that knowledge of the frequencies N;_; and N; gives
some information about the change |X; — X, ;| in the
grandparental origin. The amount of such information
is quantified by the total variation distance between the
two distributions above; clearly it depends on N,_;, n,
and 0;and is random in this sense. This information is
zero when 0; = and it increases as the recombination
fraction proceeds to 0. Also, it is zero when N,_; = n/2
and increases as V;_1 goes to 0 or to n.

Again, the pairs (X;, N;: [ =1,..., L) form a hidden
Markov chain (Figure 1), and it is possible to apply
HMM techniques and the EM algorithm to estimate
parental linkage phase (X) and recombination fractions
(0), respectively. This practice is similar to thatin the full
data case. The Viterbi algorithm is described in detail in
APPENDIX A. We show that in the case where the marker
spacing is dense and several distinct pools are used, the
information content of the pooled data about the pa-
rental linkage phase X is not much lower than the in-
formation content carried by the full data.

Normal approximation and information about link-
age phase: In the following, we present a normal ap-
proximation for transitions between allele frequency
measurements at different loci, which may be used to
speed up the numerical computations, when the sizes of
the gametic pools are large enough so that the binomial
distribution can be approximated with the normal
distribution. We also compute the information in the data
and explain how to calculate the mutual information
between linkage phase (Xi,..., X;) and the observed
allele frequency data (M, ..., N.) under the approxi-
mate model. Let

Ny~ { N, ?le =0
n—N ifX=1

be the frequency of the allele inherited from the
grandfather at locus /, where 7 is the size of the gametic
pool. The conditional distribution of N, given N_,isa
convolution of two binomials with mean m(0) = N,_; +
(n— 2]\71,.)6; and variance n(1 — 06,)0, When = is large
enough, we approximate the scaled process (n ! N;) by a
stationary Gaussian process (£;) with transition density

E1€1 ~ N(E-1(1 —20,) + 0, 0,(1 —0;)/n)

and invariant distribution A/(4, (4n) ).
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FiGure 2.—Observed information about the
parental linkage phase in pooled haplotype
data. Pooled data consist of a simulated haploid
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offspring group with 100 haplotypes (gametes).
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Allele frequency of the allele with lower fre-
0.8 , . . T T T T T . quency (top) and the corresponding observed
s —— — — e i — - - - information content (bottom) are shown for
2 06 1 200 heterozygote loci. The limit of maximal in-
£ formation in log(2) is indicated by a dashed line
e 04l in the bottom half. Genetic map distances (in
- Morgans) are also shown on the x-axis.
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map distance (in Morgans)

Analogously the conditional distribution of the fre-
quency N, given N, ; and |AX]| = |X; — X;_4| is approx-
imated by a normal distribution with mean m(0) =
N g+ (n— 2N, 1)r(JAX], 8,) and variance n(1 — 6,6,
where we denote 7(0, ) = 6 and »(1,0) =1 — 6.

After rescaling by n'/%, asymptotically we are in a
conditionally Gaussian shift experiment (see VAN DER
Vaart 1998) with shift (1 — 26,)(v/n —2N,_,//n) and
variance 0,(1 — 0,). Note that under the marginal dis-
tribution the random variable (2N,_; /+/n) has mean v/n
and variance 1; therefore the shift is bounded in
probability as n grows and the information about |AX]]
remains bounded, too. On the other hand the experi-
ment becomes more and more informative as the
recombination fraction 6; decreases, since the shift is a
standardized random variable while the variance of the
experiment goes to 0.

The observed information (information in the data)
is the relative entropy (KULLBACK and LEIBLER 1951) of
the prior distribution with respect to the posterior
distribution, which is decomposable as follows:

K(Distre(Xl, ey XL|]V17. . NL); DiStI‘(Xl,..., XL))
- 1
=2\ NN (1A%, = s)
{peawvlo;m”

Po(Ni[Ni-1, [AX] = s)log(pe(Ni|Ni-1, |AX| = 5))
- log(l?e(Nl|Nl—l))}-

See Figure 2 for illustration. Note that the parameter
vector 0 is known here.

The mutual information is obtained by integrating
out in each summand the pair (N,_;, N;) with respect to
its joint distribution; that is, N,y is N (n/2, n/4) and

then N, given N,_; is mixed normal with mixing param-
eter [AX).

Remark: Here the size of the pool is related to the
precision of the measurement, since it is implicitly
assumed that one has perfect measurements with unit
resolution. It would be more realistic to include mea-
surement errors in the model (see DISCUSSION).

Estimation of recombination fractions: While in the
previous sections the recombination fractions were
assumed to be known, we suppose them to be unknown
here. By using a Monte Carlo EM algorithm (PENTTINEN
1984; GEYER and THOMPSON 1992), we compute the
maximum-likelihood estimator of the recombination
fractions® = (0,: 1 =2,..., L) € [O,%]kl on the basis of
the pooled data.

Recall that conditionally on N, ; and |AX],

N, ~ Binomial(N;—1,1 — r(JAX,], 6;))
*Binomial(n — N,—1, r(JAX)], 6,)).

Therefore we can write N; = y; + (N, — y,), where, for
[>1, y;~Binomial (N, 1 — r(|JAX}], 8;)) and (N;— y)) ~
Binomial(n — N;_1, 7(|AX], 8;)) are conditionally in-
dependent random variables. We set y; = 0. Note that
(Xi, yi, Ni: 1=1,..., L) are sufficient statistics for the
recombination fractions (8;: [ =2,..., L).

To easily solve the maximization step in the EM
algorithm, we extend the state space by including the
variables y; to the hidden states X;. The hidden Markov
model {(X; y, N))} has the following form: Condition-
ally on (X;—1, yr1, Ni-1),

AXl|AXl717 Yi—1, M,1 ~ Bernoulli(m)

il Xi—1, Xi, yie1, Nica
~ Binomial(N;_1,1 — 7(|X; — X;—1], 6;))
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and
Ni|Xi-1, X, yi-1, yi, Nic1
~ 9yt Binomial(n — N1, T(le - lel‘, 91))

To sample (X, ¥;:I=1,..., L) conditionally on the
pooled data (IV;), we first sample (X;) conditionally on
(V)), using the Viterbi algorithm described in APPENDIX
A, and then for [ =1,..., L we sample the value for V;
conditionally on X; ;, Xj, N;_;, N;from a distribution

(Y =yl Xi—1, X, N1, Ni)

N n— Nj_ .
By N =y

X (1= r(JAX], el))nJrQy,,Mf]lel

Starting with some initial guess é(,, at stage ¢, in the
E-step we sample K independent identically distributed
realizations (X, Y?) conditionally on the pooled data
(V) and compute a Monte Carlo approximation of the
integrated log-likelihood:

1 & o
[EéH[log(pe(N, Y, X))|N] Zgz:log(pe(N, X(J)’ Y(]))).
=1

In the M-step we obtain the next estimate é, by maxi-
mizing this expression over 6, taking 6 = (6,) with

él Z:% Z

1=j=K:Ax" =0

)

1=j=K:(Ax"|=1

(Ni-1 + N, — QE('j))

When we iterate the procedure,
6, =0y = arg meaxpe(N).

This extends immediately to the situation where we
observe distinct pooled gametic samples produced by
unrelated individuals belonging to the same species.

Remark: For a given sample size, one can improve the
estimation of the recombination fraction between two
loci by measuring the frequencies at a finer map
resolution between the two loci.

Simulation experiment I—estimation of recombina-
tion fractions and parental linkage phase under dif-
ferent pooling strategies: Simulations were used to test
performance of the algorithm under different pooling
strategies. We simulated a data set containing 1000 hap-
loid gametes across 200 evenly spaced loci where the
recombination fraction between consecutive markers
was determined to be 0.01. To illustrate the effect of dif-
ferent pooling strategies we computed the maximum-
likelihood estimator of recombination fractions in sev-
eral situations, namely: (1) the full data case, where we

3 T T T T T T T T T

15}
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estimated genetic distance (in Morgans)

ol . . . . . . . .
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marker loci

FIGUrRE 3.—Simulation experiment I. The curves of esti-
mated genetic distances over marker loci (measured cumula-
tively from the left) in the case of different pooling strategies
are shown: (a) one pool of 1000 gametes, (b) two pools of 500
gametes, (c) four pools of 250 gametes, (d) eight pools of 125
gametes, (e) full data of 1000 individual gametes, and (f) true
genetic distance. Recombination fractions were converted to
genetic distance using Haldane’s mapping function.

had observations from individual haplotypes (gametes),
and (2) pooled data cases, where we split the same data
(1000 gametes) into one, two, four, or eight different
parts (pools) and observed only the allele frequency of
each pool. The Monte Carlo-EM algorithm starts from
some arbitrary values for the recombination fractions
and it is continued until convergence. In each Monte
Carlo step, 5000 independent identically distributed
realizations were drawn. The ML estimates of the recom-
bination fraction corresponding to these different situa-
tions are shown in Figure 3. One can see in this figure
that the use of several smaller pools simultaneously im-
proves the accuracy. In particular, the estimated recom-
bination fraction, corresponding to a single pool (curve
a), atlocus 80 suddenly jumps toward infinity. This does
not correspond to a change of chromosome but it is an
artifact since at that locus the frequency is exactly 0.5
and there is no information about the parental linkage
phase and the recombination fraction cannot be esti-
mated. We see that when multiple pooling is used, we
recover some information about the parental phase at
that locus so that the “chromosome jump” disappears.
By increasing the number of pools (up to eight) the par-
ental phase was recovered without errors.

Simulation experiment I—robustness with respect to
errors in data: From simulation experiment I, data of
eight pools (with n = 125 gametes in each) were further
selected to study the influence of errors on the estima-
tion procedure. Two different kinds of errors were added
to the observed allele frequencies in the pooled data.

Measurement errors: We first considered a perturbation
in the data where the measured allelic frequencies are
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(f) true distances
- (e) estimator based on full data PR
(d) =0, =0
(g) 0=0.01, =0
- (h) =0, €=0.1 R
(i) 0=0, e=0.2 4

- (j) 0=0, e=0.5
(k) 0=0, €=1.0
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estimated genetic distance (in Morgans)
N
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F1GURE 4.—Simulation experiment [—erroneous data. The
curves of estimated genetic distances over marker loci (mea-
sured cumulatively from the left) in the case of different de-
grees of error in the data are shown. The curves d, e, and f
coincide with those in Figure 3: (f) true genetic distances,
(e) estimator based on 1000 individual gametes (correct
data), and (d) estimator based on eight pools of 125 gametes
in each (correct data). In curves g—k, data sets with eight pools
of 125 gametes are also used but with errors in the data:
(g) Gaussian random error with mean 0 and standard devia-
tion y/no where o = 0.01, (h) DNA amplification error with
€= 0.1, (i) DNA amplification error with € = 0.2, (j) DNA am-
plification error with € = 0.5, and (k) DNA amplification error
with € = 1.0. Recombination fractions were converted to ge-
netic distance using Haldane’s mapping function.

masked (at each locus and independently across loci) by
adding a Gaussian error with mean 0 and standard
deviation y/no with ¢ = 0.01. This was hoped to mimic
an error attributable to the measuring instrument. In
the numerical example, with this level of noise, the pa-
rental linkage phase was recovered without errors. How-
ever, the recombination fraction estimator is clearly not
robust against this type of error and provided values that
were highly overestimated (see Figure 4). This is be-
cause after phase assignment the algorithm counts the
remaining fluctuations in the data as recombinations.

DNA amplification errors: We also considered a second
type of perturbation, which may occur during the DNA
amplification process. In our model, the pooled DNA
sample is assumed to contain a single copy of each
gametic observation (a haploid DNA) collected from
the parent. To simulate DNA amplification errors, we
add a simple perturbation to the pooled data sample by
randomizing the number of copies of each gametic
observation. Namely, a collected gamete with index ¢ is
copied C' times, where we assume that C' are indepen-
dently and identically distributed for some parameter
e [0,1],

8k+1 (1 _ g)gkl)

P(C' = k) = exp(—¢) (T+ (k—1)!

which is the convolution of a Poisson(€¢) and a Bernoulli
(1 — ¢) distribution. This gives £(C’) = 1 and Var(C’) =
(2 — €)&. For more sophisticated modeling of DNA ampli-
fication, see LaLAM et al. (2004). After DNA amplification,
we obtain a pool containing 7=y , C' gametes, and
we observe at each locus the perturbed counts 1\7, =

* C'hi, with E(N}|N;) = N,, Var(N}|N;) = (2 — €)eN..
Obviously these perturbations are correlated across loci,
and this is the reason why the recombination fraction
estimator is expected to be robust against DNA ampli-
fication errors. In a numerical experiment that has been
summarized in Figure 4, we tested several experiments
by having different levels (€ = 0.1, 0.2, 0.5, 1.0) of DNA-
amplification errors in each. In all these experiments,
the recombination fraction estimator seemed to per-
form reasonably well and the linkage phase was re-
covered without errors.

Joint estimation of recombination fractions, parental
linkage phase, and the ordering of markers: Next we
consider the case where the ordering of markers is un-
known and it is estimated from the data together with
the recombination fractions and the parental linkage
phase. We observe the allele frequencies from 7,615 dis-
tinct gametic pools obtained from the same parental
individual.

The state space is given by a permutation 7 of the
marker loci indexes {1,..., L}, together with the re-
combination fractions 6;between the consecutive mark-
ers indexed by w({ — 1) and w(l),for [ =2,..., L, and
the parental phase vector (Xi,..., X;).

To speed up the numerical computations we assume
that the gametic pools have sizes large enough so that we
can use the normal approximation.

Marginal likelihood and pseudo-likelihood: Consider a
pair of markers, j and /, together with the correspond-
ing parental linkage phases X, X; € {0, 1}. The log-
likelihood contribution when marker /follows marker j
with given phases is given by

Lo((j> X)), (I, X1)) = = npoots 3log(6(1 — 0))

L= (20— 1)%7; — 2(20 — 1)@ — 0(m0 — 2(7, + (20 — 1)7)))
20(1 —0) '

where 6 is the recombination fraction between the
markers jand 4, 7= >,”" n is the total number of
gametes in the pools, and we set

Npools
m= Y (N + (n —2N)x)

k=1

Mpools
= Y (NP + (0 — 2N X))

k=1

X (NY + (0™ — 2N®) X) /n®.

Note that (7;) and the matrix (7;) are sufficient
statistics, which need to be computed only once for
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every pair of markers. Their dimension does notdepend
on the number of pools.

Next, we assume a uniform prior on [0, %] on the
recombination fractions, and by integrating the re-
combination fraction parameter 6 with respect to the
prior we obtain the marginal-likelihood contribution
for the joint choice of the ordering and the linkage
phase, and we define the cost function by

1/2

C((j> Xp), (1, X1)) = —log (J

. exp(Lo((j, X)), (1, Xt))}de)-

Maximizing the likelihood corresponds to solving a
traveling salesman problem, i.e., finding an ordering w

of loci {1,..., L} and a phase vector (Xj,..., X;) that
minimizes the total cost
L
Co(m(1) + D C((w(l = 1), Xi1), (w(D), X)),
=2

where the cost for the first locus GCy(l) := 27y, +
n/2 — 27,

For a small number of markers itis possible to find the
optimal ordering in the maximume-likelihood sense by
using dynamic programming. However, dynamic pro-
gramming becomes unfeasible as the number of mark-
ers grows. Instead we develop a Markov chain Monte
Carlo (MCMC) method (HasTiNGs 1970) to sample
from the posterior distribution of the configuration
(w(l), X;:1=1,..., L),(0,: 1=2,..., L)).

Another problem is that the integral in the cost func-
tion does not have an analytic expression. For a large
number of markers, it becomes numerically expensive
to evaluate accurately the cost matrix {C((J, X;), (/,
X)): j, {=1,..., L}. We consider instead the pseudo-
log-likelihood

L
V() ==Y (Ra(n(t) T (-1 m(1-1) — LA(i-1)m(1)-

=2
(1)

Intuitively, the optimal ordering should be also close to
optimal in the least-squares sense, and this gives a
guideline to set the proposal distribution for the order-
ing m in the MCMC algorithm. For updating steps and
the proposal distributions, see APPENDIX B.

Simulation experiment II—joint estimation of re-
combination fractions, parental linkage phase, and the
ordering of markers: We computed a numerical exper-
iment with 400 closely linked marker loci. The markers
were not equally spaced; instead the distance between
consecutive markers was either 0.001 or 0.01 M, system-
atically in the proportion of 10 to 1. We simulated data
from 500 pools, with 200 gametes in each pool, and
then applied a random permutation to the marker
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F1GURE 5.—Simulation experiment II. Estimated order of
400 marker loci is shown, using pooled data from 500 pools,
each containing 200 gametes.

indexes and to the parental phases before collecting the
pooled data.

The MCMC estimation algorithm found quickly
(say, in a few thousand iterations) some good permuta-
tions, quite close to the true ordering of the markers.
We stopped the experiment after 2 weeks and several
million MCMC cycles, because the algorithm was clearly
stuck in a local maxima. Since the mixing of the MCMC
seems to be very slow, instead of using the empirical
distribution as an approximation to the posterior, we
look only at the maximum a posteriori (MAP), estimated
by the sampled configuration with the highest posterior
density.

The pseudo-log-likelihood values for initial, true,
and estimated MAP configurations were —19,747,072,
—175,385, and —121,663, respectively. In Figure 5, we can
see that the estimated MAP configuration is not far away
from the true ordering, since all the markers are placed
extremely close to their true positions. In fact, many
markers are placed correctly while some relatively short
segments are placed in their right positions but in the
reverse direction.

The parental phase was recovered without errors, and
in Figure 6 we plot the genetic distances estimated
without any prior knowledge on the ordering of the
markers, compared with the true map and the map
obtained by using the full data and knowing the true
ordering of the markers. These estimates are compa-
rable with the corresponding estimates obtained in
simulation experiment I where the pooled data were
used and ordering of the markers was known a priori. It
seems that when the number of pools is large enough
the marker order can be recovered so well that the two
pooling estimators of the recombination fraction (with
and without prior knowledge of the ordering) behave
very similarly.
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Ficure 6.—Simulation experiment II. Genetic distance
curves over marker loci (measured cumulatively from the left)
are shown: (a) true genetic distances, (b) estimated genetic
distance using the full data with known marker ordering,
and (c) the genetic distance is estimated simultaneously with
the ordering of the markers by using pooled data.

DISCUSSION

We have presented a method to estimate parental
linkage phase, sex-specific recombination fractions, and
ordering of markers using pooled haploid DNA avail-
able from sperm, egg, or megagametophyte samples.
This method has a lot of promise because the potential
accuracy provided by this method has not been available
without individual genotyping before. Use of a single
pool seems to result in some information gaps along the
chromosome where the linkage phase (see Figure 2)
and recombination fractions (see Figure 3) cannot be
determined. However, these gaps can be effectively
avoided by using multiple (two or more) pools simulta-
neously because random gap positions are likely to differ
between pools.

The parental linkage phase and recombination fre-
quency estimation in this method is based on random
fluctuations in transmission ratios and their correlation
between the loci under Mendelian inheritance. The in-
formation content in the pooled data seems to depend
on how much the observed frequency deviates from its
expectation. To maximize the information content we
propose the following strategy, which requires individ-
ual genotyping at the first locus. One could classify
individuals into two sets of divergent gametic pools
according to the typing of the allele at the first locus.
These two pools would then be used to measure pooled
frequencies from otherloci. This would enhance (locally)
the information of the pooled frequencies, without the
need of any corrections.

We comment here briefly about segregation distor-
tion. Segregation distortion may follow as result of a se-
lection process on the gametes produced in the meiosis.

Since we are considering a short chromosomal segment,
we may assume that the selection probability depends
only on the alleles at a single locus. Having assumed that
the recombination process occurs independently from
the haplotypes of the parent, it follows that the distribu-
tion of the recombination pattern is not affected by the
selection process. In that case we can apply our method
without changes. In fact, this kind of segregation dis-
tortion would produce data that on average are more
informative around the selective locus than in the neu-
tral case. Note, however, that in the case where selection
probability depends on several loci, the distribution of
the recombination pattern on the selected gametes may
be perturbed in a way that depends on the alleles,
violating our assumptions. Because this method is based
on typing gametic samples (of sperm or egg) rather than
living progeny, it can be used to estimate offspring ratios
and sex-specific recombination frequencies in a meiotic
state under transmission equilibrium. These estimates
can then be compared to similar estimates obtained
from living organisms (i.e., under a postmeiotic state).
A statistically significant departure in estimates between
these two states can then be taken as evidence in favor of
postmeiotic selection as a source of transmission distor-
tion. For other methods to determine the origin of trans-
mission ratio distortion, see DE VILLENA ef al. (2000).

We hope that the proposal distributions in the MCMC
algorithm could be improved in the future to achieve a
faster relaxation. One possibility to be explored would
be to use particle filter (say, genetic algorithm) tech-
niques, which can be used successfully for the traveling
salesman problem (see DEL MoORAL 2004). The linkage
phase estimator is robust to errors and the estimator for
genetic distance is robust to DNA amplification errors
although the sources of errors in the allele frequency
measurements from gametic pools are not taken into
account in the current model. We are currently investi-
gating the possible further extension of the method,
using errors-in-variable modeling (FULLER 1987; BIEMER
et al. 1991; CARROLL et al. 1995). In any case, the mea-
surement errors can be controlled in the design of the
pooling experiment—by taking several pools with a pool
size small enough. Of course, we are looking forward to
testing our method with real data when available. The
software implementing the method is freely available for
research purposes from the authors.
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APPENDIX A: VITERBI ALGORITHM

Here we describe the Viterbi algorithm for the hidden Markovmodel {(X;, N;): [ =1,..., L}, where we assume that
the recombination fractions (6,: [ = 2,..., L) are known in advance. The problem is to sample the parental linkage
phase (Xi,..., X;) conditionally on the observed allele frequencies (M, . .., N), which are obtained from the pool of
gametes. Because we are on a discrete state space we can use a standard setting; see DURBIN et al. (1998) and RABINER
(1989).

Nothing is computed for locus /= 1, because linkage phase X; and observed frequency N, are independent there.
But for all subsequent loci [ =2,..., L, the (conditional) transition probabilities p(X; = xX;_1 = 3 N1, N)) are
recursively computed for all possible values of (x, y). The term X;_; is then integrated out from this expression so that
we obtain

PXi = XNy, Noy oo Nioy N = Y p(X0 = x| X1 =y, Nty N)p(Xoot =)IN1, Na,.y Nicg, Nica).
y=0,1
After these L forward steps, linkage phase X; is sampled from p(X;|Ni, Na,..., No_i, Ny) and the backward
algorithm continues for [ =L —1,..., 1 as follows:
Linkage phase X;is drawn given the data and X;;; with probability proportional in x to

f)(Xl = .X'|]V], N27 RS ]Vl—h M)p(}(l+l|}(l =X, Ma ]\]l+])-

After L backward steps we obtain the sample (Xi, ..., X;) from the posterior distribution.

By dynamic programming it is also possible to compute a posteriori the most probable path and its posterior
probability.

APPENDIX B: UPDATE STEPS AND PROPOSAL DISTRIBUTIONS FOR THE METROPOLIS ALGORITHM
A MCMC cycle consists of several proposed moves:

i. We perform a block update for the parental phase vector (Xi, ..., X;), which samples from the fully conditional
posterior distribution given the data and the current values of and (6,,. .., 6,). If there is no prior information
about the phase vector this is very simple since under the uniform prior for X, AX; will be conditionally
independent given . If the prior for Xis not uniform, we use the Viterbi algorithm (see APPENDIX A).

ii. We update independently the recombination fraction parameters 6, conditionally on the data, on m, and on the
phases X; (1), Xn(). This is a Metropolis move where as a proposal distribution for 6, we take a histogram
approximation over a finite grid G C [0, %] of the full conditional density p(9,|N1£271), Nﬂiﬁ;), k=1,..., Npools,
X1y, Xe)-

iii. The two following moves update the ordering. For each of these, we resample simultaneously the parental phases
and the recombination fraction parameters around the markers involved.
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iv. As a proposal distribution, we apply a random permutation to the current ordering. For each locus involved, we
resample jointly the phase and the recombination fractions between the new neighboring markers (that is, by
using the proposal distribution described in ii given the new ordering and phase).

v. As a proposal distribution we randomly select a segment and we cut it off from the chromosome, join the extremes,
choose a random location in the chromosome, and insert the segment there, eventually also inverting the
direction of the segment. We also have the possibility to flip simultaneously all the parental phases of the loci
belonging to the segment. Finally new recombination fraction parameters are sampled for the markers around the
two cuts points by using the proposal distribution described in ii.

The random permutation in move iii and the random segment in move iv together with the new phases are not
selected uniformly at random. Instead in the proposal distribution we take into account the pseudo-log-likelihood
(Equation 1).

For each of these moves, for a given starting configuration (w, X) we denote by F(m, X) the set of configurations that
are reachable in one step. By using the pseudo-log-likelihood we define the proposal distribution as

q((m, X)—>(n', X')) = { Z,(m, X)exp(o—t\lf(w’, X)) i)ft}(lz;;”fé? € F(m, X)

where ¢ = 0 is an inverse temperature parameter { = 0 corresponding to the uniform distribution over F(m, X), and
Z,(w, X) is the normalizing constant. For high values of ¢, the proposal distribution among the reachable con-
figurations will choose with high probability those with the smallest energy. Since we want to have also a chance to
propose any reachable configuration, we let the inverse temperature parameter ¢ vary cyclically in a finite set.

The Hastings ratio for such moves is given by

exp(=G(m' (1)) (xr(1)) ﬁ i (xn
exp(=Co(m(1))) (1)) 1255 To(%r

(l)) LQQ(TI"(Z - 1)) x"n"(lfl)7 ’IT’(I), x"n'(l);data) qt((ﬂ,a x')—>('rr, X))
W) Lo, (m(l—=1), X511y, T(1), xe(p;data) g ((m, x) = (7', x"))
§(8;], x, data)

X .
g q07w', x', data)

In the case that the data contain gametic pools sampled from jJdifferent parental individuals, it is clear that one
should extend the MCMC algorithm by keeping one permutation vector (1, ..., ;) and introducing J/independent
parental phase vectors (X\,..., X)), j=1,..., J.



